> 数学 >
矩阵和行列式的区别
具体一点说
人气:496 ℃ 时间:2020-03-23 07:12:07
解答
n阶行列式实质上是一个n^2元的函数,当把n^2个元素都代上常数时,自然得到一个数.当我们写的时候,写成一个表是为了方便的反映函数的物性.当然,决不是指任何n^2元函数都是行列式,具体的行列式函数定义你找书一看看.为了让你自己觉得好理解一些,你可以试着照行列式的定义把行列式写成多项式和的常见形式,当然那个形式比较复杂,但本质上与行列式是一样的,只是写成行列式易于直观的做各种运算处理.
矩阵就是一个数表,它不能从整体上被看成一个数(只有一个数的1阶矩阵除外),当矩阵的行数与列数相等为n时,我们把相应的数代入上面我提到的n^2元函数中就得到一个行列式.代入的方法则是简单的把两个表对应起来.
在作为一个数表的矩阵上,我们本可以任意的定义运算规则(真的是指你爱怎么定义就怎么定义),但是实际上我们多是把矩陈用于解决某些特殊类型的问题,所以你想要知道某种运算,比如乘法运算是怎么来的就得看年它们是做什么用的(比如用于线性变换).
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版