> 数学 >
如图,正方形ABCD中,点M、N分别在AB、BC上,BM=BN,连接MC,作BP⊥MC垂足为P,连接PN,PD.求证:PN⊥PD.
人气:466 ℃ 时间:2020-10-01 21:11:36
解答
∵BP⊥MC,∠B=90°
∴∠PBC+∠PBM=90°,
又∵∠PBM+∠PMB=90°,
∴∠PBC=∠PMB.
∴△PBM∽△PCB,
PB
BM
=
PC
BC

∵BM=BN,BC=DC,
PB
BN
=
PC
CD

∵∠PCD+∠PCB=90°,∠PBC+∠PCB=90°,
∴∠PCD=∠PBN.
∴△PBN∽△PCD.
∴∠DPC=∠BPN.
又∵BP⊥MC,
∴∠BPN+∠CPN=90°
∴∠DPC+∠CPN=90°,
即∠DPN=90°
∴PN⊥PD.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版