∴-90°<45°-α<0°,135°<135+β<180°
∵cos(45°−α)=
3 |
5 |
4 |
5 |
∵sin(135°+β)=
5 |
13 |
12 |
13 |
∴sin(α+β)=-cos[(135°+β)-(45°-α)]
=-[cos(135°+β)cos(45°-α)+sin(135°+β)sin(45°-α)]
=−[(−
12 |
13 |
3 |
5 |
5 |
13 |
4 |
5 |
56 |
65 |
cos(α-β)=-cos[(135°+β)+(45°-α)]
=[cos(135°+β)cos(45°-α)-sin(135°+β)sin(45°-α)]
=-[(−
12 |
13 |
3 |
5 |
5 |
13 |
4 |
5 |
16 |
65 |