求椭圆x^2/9+y^2/4=1中斜率为2的平行弦中点的轨迹方程
人气:448 ℃ 时间:2019-10-10 01:16:04
解答
y=2x+b
4x^2+9(2x+b)^2-36=0
40x^2+36bx+9b^22-36=0
x1+x2=-35b/40=-7b/8
x/2=-7b/16
(y1+y2)/2=y=(x1+x2)+b
=-7b/8+b=b/8
x/y=(-7/16)*8=-7/2
-7y=2x
2x+7y=0
推荐
- 已知椭圆x^2/2+y^2=1,求(1)斜率为2的平行弦中点的轨迹方程;(2)过A(2,1)引椭圆割线,求截得弦中点的轨迹方程;(3)过点P(1/2,1/2)且被P平分的弦中点的直线方程
- 已知椭圆2分之x方+Y方=1 (1)求斜率为2的平行弦的中点轨迹方程
- 已知椭圆学x^2/2+y^2=1,求斜率为2的平行弦的中点轨迹方程
- 椭圆x^2/4+y^2/3=1中斜率为4/3的平行弦中点的轨迹方程是________
- 已知椭圆为x^2/4+y^2=1,求该椭圆被斜率为1的直线所截得的平行弦中点的轨迹方程
- 湖水深度为5米,飞过湖面上空10米高的小鸟在湖中的像到水面的距离是()米
- 找规律:5,10,17,26…用含n的式子表示
- dining room怎么读
猜你喜欢