已知f(x)=2+log3x,x∈[1,9],求y=[f(x)]2+f(x2)的最大值及y取最大值时x的值.
人气:130 ℃ 时间:2019-10-23 09:56:38
解答
∵f(x)=2+log
3x,x∈[1,9],
∴y=[f(x)]
2+f(x
2)=(2+log
3x)
2+(2+log
3x
2)
=(log
3x)
2+6log
3x+6,令t=log
3x
由题意可得
即1≤x≤3,则t∈[0,1]
∴y=t
2+6t+6=(t+3)
2-3在[0,1]上单调递增
当t=1即x=3时,函数有最大值,y
max=13
推荐
- 已知fx=2+log3x x∈[1,9],求y=[fx]^2+f(x^2)的最大值以及y取最大值时x的值
- 已知函数f(x)=2+log3x(1≤x≤9),求函数y=[f(x)^2+f(x^2) 的最大值和最小值,并求出相应的值
- 已知函数f(x)=2+log3X,x∈[1,9]求y=[f(x)]²+f(x²)的最大值,及y取得最大值时x的值.
- 已知f(x)=2+log3x x∈[1,9],求y=[f(x)]^2+f((x)^2)的最大值以及y取最大值时x的值
- 已知函数f(x)=log3x+2 (x∈[1,9]),则函数y=[f(x)]2+f(x2)的最大值是( ) A.13 B.16 C.18 D.22
- 两只相同的塑料瓶,分别装有相同质量的水和沙子,从斜面的相同高度同时由静止滚下,到斜面底部时,为什么装水的瓶子转化成的内能少?
- He works as a w___ in a restaurant.
- 有关遇知音难觅的诗句标出诗人和出处
猜你喜欢