已知焦点在x轴上的椭圆离心率e=3/5,短轴长为8,o为原点.1)求椭圆方程(2)抛物线y²=2px焦点与椭圆
接(2)重合,求抛物线方程
人气:249 ℃ 时间:2020-02-06 01:16:44
解答
1、e=c/a=3/5,又2b=8,则b=4,从而a=5,c=3.椭圆方程是x²/25+y²/16=1;
2、椭圆焦点F(±3,0),抛物线焦点与之重合,则p/2=3,p=6,抛物线方程是y²=12x.
推荐
- 已知抛物线的顶点在原点,焦点和椭圆x^2/16+y^2/8=1的右焦点重合,求抛物线的标准方程
- 抛物线的顶点在原点,焦点为椭圆x^2/5+y^2=1的左焦点,过点m(-1,-1)引抛物线的弦
- 已知中心在原点,焦点在x轴上的椭圆离心率是e=e=√2/2,经过抛物线x^2=4y的焦点.
- 已知椭圆的中心在原点,离心率e=1/2,且它的一个焦点与抛物线y2=-4x的焦点重合,求此椭圆方程.
- 已知椭圆C的中心在原点,焦点在x轴上,它的一个顶点恰好是抛物线Y=1/4X2的焦点,离心率为(2根号5)/5!求椭圆的标准方程;
- 整数和小数的四则运算的计算方法: 整数 小数 加法和减法 乘法 除法
- 要求:1、整体思想
- 8个小朋友分6张饼,应如何切,才能使切的次数最少,并且每个小朋友分得的同样多呢?
猜你喜欢