且BC⊥AB,

∴BC⊥平面PAB.(3分)
∵PA⊂平面PAB,∴PA⊥BC.(4分)
(Ⅱ)∵PA=PB=
| 6 |
| 3 |
∵AB⊥BC,∠BAC=30°,∴BC=AB•tan30°=2.(7分)
∵BC⊥平面PAB,∴BC⊥PB,∴PC=
| PB2+BC2 |
| 10 |
(Ⅲ)作PO⊥AB于点O,OM⊥AC于点M,连接PM.∵平面PAB⊥平面ABC,
∴PO⊥平面ABC,根据三垂线定理得PM⊥AC,∴∠PMO是二面角P-AC-B的平面角.(12分)
在Rt△AMO中,OM=AO•sin30°=
| AO |
| 2 |
易知AO=PO,
∴tanPMO=
| PO |
| OM |
| AO |
| OM |
即二面角P-AC-B的大小是arctan2(14分)

