∵sin230°+cos260°+sin30°cos60°=
3 |
4 |
3 |
4 |
∴sin230°+cos2(30°+30°)+sin30°cos(30°+30°)=
3 |
4 |
3 |
4 |
于是根据各式的共同特点,则具有一般规律的等式可得出sin2α+cos2(α+30°)+sinαcos(α+30°)=
3 |
4 |
证明:左边=sin2α+cos2(α+300)+sinαcos(α+300)=
1-cos2α |
2 |
1+cos(600+2α) |
2 |
sin(300+2α)-sin300 |
2 |
=1+
cos(600+2α)-cos2α |
2 |
1 |
2 |
1 |
2 |
=1+
-2sin(300+2α)sin300 |
2 |
1 |
2 |
1 |
2 |
=
3 |
4 |
1 |
2 |
1 |
2 |
3 |
4 |