> 数学 >
设f(x)在[0,1]上可微,且f(1)=2∫0~1/2 xf(x)dx,证明存在ξ属于(0,1),使f(ξ)+ξf'(ξ)=1
人气:449 ℃ 时间:2019-10-23 01:22:34
解答
证明:由积分中值定理,存在η∈(0,1/2)使2∫[0→1/2] xf(x) dx=2*ηf(η)*(1/2)=ηf(η)=f(1)令g(x)=xf(x),则g(η)=ηf(η)=f(1),g(1)=f(1)因此g(x)在[η,1]内满足罗尔中值定理条件,即存在ξ∈(η,1),使g'(ξ)=0,且g...
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版