已知向量m=(cosθ,sinθ)和向量n=√2-sinθ,cosθ),θ∈(∏,2∏),且丨m+n丨=8√2/5,求cos(θ/2+π/8)
人气:291 ℃ 时间:2020-04-16 04:36:52
解答
cos(θ/2+π/8)=-4/5
m+n=(cosθ+√2-sinθ,sinθ+cosθ)
丨m+n丨=√[(cosθ+√2-sinθ)^2+(sinθ+cosθ)^2]
=√[4+2√2cosθ-2√2sinθ]
=√[4+4(cosπ/4cosθ-sinπ/4sinθ)]
=√[4+4cos(θ+π/4)]
=√{4+4[2cos(θ/2+π/8)cos(θ/2+π/8)-1]}
=2√2│cos(θ/2+π/8)│
=8√2/5
│cos(θ/2+π/8)│=4/5
θ∈(π,2π),θ/2+π/8∈(5π/8,9π/8)
cos(θ/2+π/8)=-4/5
推荐
- 已知向量m=(cosθ,sinθ)和向量n=√2-sinθ,cosθ),θ∈(∏,2∏),且丨m+n丨=8√2/5则cos(θ+π/4)的值为
- 已知向量m=(cosθ,sinθ)和n=(√2-sinθ,cosθ),θ属于(180∘,360∘),且|m+n|=8/5 *√2,求 cos(θ/2+180∘/8)的值
- 已知向量m=(cosθ,-sinθ),n=(根号2+sinθ,cosθ),θ∈(π,3π/2),且cos(θ/2+π/8)=-4/5,求|m+n|的值谢谢
- 已知向量m=(cosθ,-sinθ),n=(√2+sinθ,cosθ),θ∈(π,3π/2),且cos(θ/2+π/8),求绝对值m+n的值.
- 已知向量m=(Cosθ,Sinθ)和n(根号2 -Sinθ,Cosθ),且Im+nl= 求Cos(θ/2+π/8)
- √30是无理数求证明√2+√3+√5是无理数
- 用物理学的术语解释“摩擦生热”和“钻木取火” 急~~
- 【数学】用纸来缠绕一个细长的圆柱体,需要多少张才能将圆柱体增大到所需的直径?
猜你喜欢