高等代数多项式定理证明是不是不太严谨?
定理:如果不可约多项式p(x)是f(x)的k重因式(k≥1),那么它是导数f'(x)的k-1重因式.
证明:由假设,f(x)=p∧k(x)g(x),其中p(x)不能整除g(x).有f'(x)
=p∧k-1(x)[kg(x)p'(x)+p(x)g'(x)],所以p∧k-1|f'(x),因为p(x)|p(x)g'(x),p(x)不整除g(x)p'(x),……所以得证.
我的疑问:光凭p(x)不整除g(x),就能说p(x)也不整除g(x)p'(x)吗,依据什么定理
人气:193 ℃ 时间:2020-04-30 00:20:11
解答
p(x)是不可约多项式,而deg[p'(x)]
推荐
- 高等代数多项式有哪些定理?
- 高等代数多项式定理的逆定理证明没看懂?
- 高数极限定理证明
- 高等代数多项式证明
- 高等代数习题求解~关于矩阵与多项式理论
- 英语小话剧,有中文,幽默有趣,4人,最好都是女生,可以说明道理,
- 已知f(x)是R上的奇函数,f(1)=2,且对任意x属于R都有f(x+6)=f(x)+f(3)成立,则f(3)= , f(2009)=
- She said that they _____a good time
猜你喜欢