> 数学 >
1,已知集合M={3,2},n={1,2},函数f:M→N满足:对任意的x属于M,都有x+f(x)为增函数,满足条件的函数个数有多少个?
2.设f(x)是定义在R是上的奇函数,且f(x)=-f(4-x)当x属于[0,2]时,f(x)=ax-x²,则f(2013)等于多少?
人气:450 ℃ 时间:2020-01-29 01:49:49
解答
1.对任意的x属于M,都有x+f(x)为增函数
∵y=x是单调递增的
∴f(x)是常值函数时显然x+f(x)为增函数
这样的f有两种f(x)=1和f(x)=2
当f:是M→N的满射 又有一种就f:f(2)=1,f(3)=2
综上可得满足条件得函数有3个.
2.f(x)是定义在R是上的奇函数
∴f(x)=-f(-x)
∴f(x)=-f(4-x)=f(x-4) 即f(x+4)=f(x)
函数f(x)是以4为周期的周期函数.
∴f(2013)=f(4*503+1)=f(1)
∵x属于[0,2]时,f(x)=ax-x²
∴f(1)=a-1
因此f(2013)=a-1.第二题其实就是要求a的值 ,答案上很狗血的四个选项,10-12第一题谢谢;啦哦我明白了∵f(x)是奇函数∴f(-2)=-f(2)又根据f(x+4)=f(x)∴f(-2+4)=f(2)=f(-2)∴f(2)=0∵f(2)=2a-4=0解得a=2∴f(2013)=f(1)=a-1=1。
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版