证明:x^4+y^4+z^4-2x^2y^2-2x^2z^2-2y^2z^2能被(x+y+z)整除
证明:x^4+y^4+z^4-2x^2y^2-2x^2z^2-2y^2z^2是(x+y+z)的倍数
人气:287 ℃ 时间:2020-02-05 00:25:01
解答
x^4+y^4+z^4-2x^2y^2-2x^2z^2-2y^2z^2
=x^4+y^4+z^4+2x^2y^2-2x^2z^2-2y^2z^2-4x^2y^2
=(x^2+y^2-z^2)^2-4x^2y^2
=(x^2+y^2-z^2+2xy)(x^2+y^2-z^2-2xy)
=[(x+y)^2-z^2][(x-y)^2-z^2]
=(x+y+z)(x+y-z)(x-y+z)(x-y-z)
所以x^4+y^4+z^4-2x^2y^2-2x^2z^2-2y^2z^2是(x+y+z)的倍数
推荐
- 证明:(y+z-2x)3+(z+x-2y)3+(x+y-2z)3=3(y+z-2x)(z+x-2y)(x+y-2z).
- x,y,z正整数 x>y>z证明 x^2x +y^2y+z^2z>x^(y+z)*y^(x+z)*z^(x+y)
- 证明1/2x+1/2y+1/2z≥1/(x+y)+1/(x+z)+1/(z+y)
- 试证明(x+y-2z)+(y+z-2x)+(z+x-2y)=3(x+y-2z)(y+z-2x)(z+x-2y)
- (用反证法证明)已知a,b,c∈R,且a=x^2-2y+π/2,b=y^2-2z+π/3,c=z^2-2x+π/6.
- 今年小强和爷爷的年龄的和是59岁,4年后爷爷比小强大49岁,今年小强和爷爷各几岁?具体怎么算说清楚
- 冷却一杯热饮料 悬赏10-20
- 求问几道GRE数学题,
猜你喜欢