> 数学 >
证明:x^4+y^4+z^4-2x^2y^2-2x^2z^2-2y^2z^2能被(x+y+z)整除
证明:x^4+y^4+z^4-2x^2y^2-2x^2z^2-2y^2z^2是(x+y+z)的倍数
人气:174 ℃ 时间:2020-02-05 00:25:01
解答
x^4+y^4+z^4-2x^2y^2-2x^2z^2-2y^2z^2
=x^4+y^4+z^4+2x^2y^2-2x^2z^2-2y^2z^2-4x^2y^2
=(x^2+y^2-z^2)^2-4x^2y^2
=(x^2+y^2-z^2+2xy)(x^2+y^2-z^2-2xy)
=[(x+y)^2-z^2][(x-y)^2-z^2]
=(x+y+z)(x+y-z)(x-y+z)(x-y-z)
所以x^4+y^4+z^4-2x^2y^2-2x^2z^2-2y^2z^2是(x+y+z)的倍数
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版