1/(1*2)+1/(1*2*3)+1/(1*2*3*4)+……+1/(1*2*3*4*……*100)
99/100
人气:160 ℃ 时间:2020-05-08 10:52:56
解答
1/(1*2)+1/(1*2*3)+1/(1*2*3*4)+……+1/(1*2*3*4*……*100)
=(1-1/2)+(1/2-1/3)+(1/3-1/4)+……+(1/99-1/100)
=1-1/2+1/2-1/3+1/3-1/4+……+1/99-1/100
=1-1/100
=99/100
推荐
猜你喜欢
- 一个完整的乘法算试,一个因数缩小十倍,要使积不变,另一个因数( )
- 他叫李明 用英语怎莫说?
- 客货两车分别从甲乙两地相对开出,3小时后,客车行了240千米,货车行了180千米,这时两车相距全程的25%,甲乙两地相距多少千米?(两种答案)
- 常微分方程 初始条件
- 若平方根x+3等于2,则3x+13的平方根是
- 若多项式(2mx²-x²+3x+1)-(5x²-4y²+3x)的值与x无关,求2m³-【3m²+(4m-5)+m】的值
- 已知二次函数f(x)=ax²+2ax+1在[-3,2]上有最大值4,则实数a的值为
- When I came into the room,I found him ____ in writing his doctoral dissertation.