过抛物线y²=4x的焦点F作相互垂直的两条弦AB和CD,则|AB|十|CD|最小值为
人气:254 ℃ 时间:2020-03-23 05:49:36
解答
y²=4x焦点F(1,0)AB:x=ty+1,CD:x=-1/ty+1x=ty+1与y²=4x 消x得y²-4ty-4=0A(x1,y1)B(x2,y2)y1+y2=4t,y1y2=-4弦长公式|AB|=4(t²+1)同理|CD|=4(1/t²+1)|AB|+|CD|=8+4(t²+1/t²)≥8+8...看得懂不?要不要标准过程焦点(p 2 ,0),设AB:y=k(x-p 2 ),那么CD:y=(-1 k )(x-p 2 ) A、B坐标满足方程k2x2−(pk2+2p) x+k2p2 4 =0, C、D坐标满足方程x2−(p+2pk2) x+p2 4 =0. AB= (x1−x2)2+(y1−y2)2= (k2+1)(x1−x2)2= (k2+1)[(x1+x2)2−4x1x2]=|2p(k2+1) k2 | 所以1 AB =k2 2p(k2+1)CD= (x1−x2)2+(y1−y2)2= (1 k2 +1)(x1−x2)2= (1 k2 +1)[(x1+x2)2−4x1x2]=|2p(k2+1)| 则AB+CD=|2p(k2+1)|×|1 k2 +1|=|2p×(k+1 k )2|≥|8p|=16.额。打不出根号来。我给你贴图吧。谢了,我懂了
推荐
猜你喜欢