已知函数f(x)=(ax2+bx+c)ex(a>0)的导函数y=f′(x)的两个零点为-3和0.
(Ⅰ)求f(x)的单调区间;
(Ⅱ)若f(x)的极小值为-1,求f(x)的极大值.
人气:286 ℃ 时间:2020-03-27 21:09:47
解答
(Ⅰ)f'(x)=(2ax+b)ex+(ax2+bx+c)ex=[ax2+(2a+b)x+b+c]ex.令g(x)=ax2+(2a+b)x+b+c,∵ex>0,∴y=f'(x)的零点就是g(x)=ax2+(2a+b)x+b+c的零点,且f'(x)与g(x)符号相同.又∵a>0,∴当x<-3...
推荐
- 已知函数f(x)=(ax²+bx+c)e^x(a>0)的导函数y=f`(x)的两个零点为-3和0
- 已知函数f(x)=(ax2+bx+c)ex(a>0)的导函数y=f′(x)的两个零点为-3和0. (Ⅰ)求f(x)的单调区间; (Ⅱ)若f(x)的极小值为-1,求f(x)的极大值.
- 设函数f(x)={2(x>0),x2+bx+c(x≤0),若f(-4)=f(0),f(-2)=-2,求函数g(x)=f(x)-x的零点的个数.
- 已知函数f(X)=-x3+ax2=bx=c在(-,0)上是减函数,在(0,1)上是增函数,f(x)在R上有3个零点.且1是其中一个零点
- 已知函数f(x)=ax^2+bx+c,若f(-1)=0,试判断函数f(x)零点个数
- 红光小学今年春季种杨树64棵,相当于柳树的120%,杨树比柳树多多少棵
- when we got there ,we saw him ___ at the table .A work B to work C was working D working
- Life's greatest happiness is when you want to cry,and someone to make you laugh!
猜你喜欢