若x2+mx+n与x3+2x-1的乘积中不含有x3项和x2项,求m,n的值.
人气:199 ℃ 时间:2020-04-16 04:58:24
解答
∵(x2+mx+n)(x2+2x-1)
=x4+2x3-x2+mx3-2mx2-mx+nx2+2nx-n
=x4+(2+m)x3+(-1-2m+n)x2+(-m+2n)x-n,
∴要使x2+mx+n与x3+2x-1的乘积中不含有x3项和x2项,
则有2+m=0,-1-2m+n=0,
解得m=-2,n=-3.
推荐
猜你喜欢
- You can do everything,if it's important enough for you to do.
- 成语接龙,人一己百.百()()()
- 我们来做个轻松的运动放松一下英语
- 把关于x的方程(2x-1)(x+3)=x^2+3化成ax^+bx+c=0的形式,b^2-4ac=______,方程的根是_______.
- 已知两个数的最大公因数是8,这两个数共有几个公因数?
- 圆周率π计算出来有何意义
- 若方程2ax*x-x-1=0 在区间(0,1)内恰好有一个解,则a的取值范围(
- 老师说;一半的学生在学数学,' 四分之一的学生在学音乐,七分之一学生在念外语,还剩不足6名学