| 1 |
| 2 |
(2)过点A作AM⊥x轴于M,则OM=AM=2;
∵OD=t,
∴OE=2t,ME=2t-2,EF=t;

由于EF∥AM,则有△BEF∽△BMA,得:
| BE |
| BM |
| EF |
| AM |
| BE |
| BE+2t-2 |
| t |
| 2 |
解得:BE=
| 2t2-2t |
| 2-t |
故OB=OE+BE=2t+
| 2t2-2t |
| 2-t |
| 2t |
| 2-t |
(3)本题分两种情况:
①∠FOE=∠FBE,则有△BFE≌△OFE
∴OE=BE=2t
∴OB=4t=
| 2t |
| 2-t |
解得t=
| 3 |
| 2 |
②∠OFE=∠FBE,由于△BFE∽△OFE,可得:
EF2=OE•BE,即t2=2t•BE,
∴BE=
| t |
| 2 |
∴OB=OE+BE=2t+
| 1 |
| 2 |
| 5 |
| 2 |
∴OB=
| 2t |
| 2-t |
| 5 |
| 2 |
解得t=
| 6 |
| 5 |
综上所述,当t=
| 6 |
| 5 |
| 3 |
| 2 |

接OF,设OD=t.