> 数学 >
计算定积分∫dx/[(x+1)(1+√(1+x))] x∈(0 ,3)
人气:495 ℃ 时间:2020-06-14 00:50:00
解答
∫ dx/[(x + 1)(1 + √(1 + x))]
令t² = x + 1,2tdt = dx,x∈[0,3] ==> t∈[1,2]
= ∫ 2t/[t²(1 + t)] dt
= 2∫ (1 + t - t)/[t(1 + t)] dt
= 2∫ [1/t - 1/(1 + t)] dt
= 2[ln|t| - ln|1 + t|]
= 2ln|t/(1 + t)|
= 2ln(2/3) - 2ln(1/2)
= 2ln(4/3)
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版