设P是一个数集,且至少含有两个数,若对于任意a,b∈R都有a+b,a-b,ab,a/b ∈P(b≠0),则称P是一个数域.例如
第四个正确么 为什么?
设P是一个数集,且至少含有两个数,若对于任意a,b∈R都有a+b,a-b,ab,a/b ∈P(b≠0),则称P是一个数域。例如,有理数Q是一个数域,数集F={a+b√2|a,b∈Q}也是数域。给出下列命题:①整数集是数域;②若有理数集Q含于M,则数集M也为数域;③数域必为无限集;④存在无穷多个数域。其中正确的命题有__________(填序号)。
人气:495 ℃ 时间:2020-05-12 07:11:27
解答
我认为第四个正确
形同数集F有无数多个数域
例如F={a+b√3|a,b∈Q}等等百度百科里不是说数域只有三个么 那又怎么解释呢?
推荐
- 设P是一个数集,且至少含有两个数,若对任意a,b∈P.都有a+b,a-b,ab,a/b(b≠0∈P,则称P是一个数域.1)若有
- 设P是一个数集,且至少含有两个数,若任意a,b∈P,都有a+b,ab,a/b∈P(除数b≠0),则称P是一个数域
- 设P是一个数集,且至少含有两个数,若对任意a,b∈R,都有a+b,a-b,ab,a/b∈P(除数b≠0),则称P是一个数域,那么数集F={a+b根号2|a,b∈Q}为什么也是数域?
- 设P是一个数集,且至少含有两个数,若对任意a,b∈R(除数b≠0),则称P是一个数域,那么数集F
- 设p是一个数集,且至少含有两个数,若对任意a,b属于p,都有a+b,a-b,ab,b分之a属于p,则称p是一个数域,例如有理数集是数域,有下列命题:①,数域必含0,1两个数②整数集是数域③若有理数集包含于m,则数集m必为数域④数域必为无限集
- 若x的平方+x-1=0,求2009x的3次方+2008x的平方-2010x-2012
- 物理变化和化学变化的区别是什么
- 能否由元素周期表看出一种元素的电子排布
猜你喜欢