∫∫(x^2/y^2)dxdy,其中D为直线y=x,y=2和双曲线xy=1所围成的区域, 计算二重积
求过程
人气:410 ℃ 时间:2019-08-21 22:23:02
解答
联立解 y=x,xy=1,得第一象限交点 (1,1),则
∫∫ x^2/y^2dxdy = ∫(1/y^2)dy∫ x^2dx
= ∫ 1/y^2dy[x^3/3]∫
= (1/3)∫ (y-1/y^5)dy
= (1/3)[y^2/2+1/(4y^4)] = 27/64
推荐
- ∫∫(x^2/y^2)dxdy,其中D为直线y=x,x=2和双曲线xy=1所围成的区域,计算二重积分.
- ∫∫(x^2+y)dxdy,其中D为直线y=x,x=2和双曲线xy=1所围成的区域, 计算二重积分.
- ∫∫(x^2/y)dxdy,其中D为直线y=x,x=2和双曲线xy=1所围成的区域, 计算二重积分. 求过程
- 设D是两条双曲线xy=1和xy=2,直线x=1和x=3所围成第一象限内的闭区域∫∫(x^2/y^2)dxdy
- 计算二重积分∫∫D xy dxdy,其中D是由直线y=2,y=x,xy=1所围成的区域.
- 春风和煦的诗句
- 甲、乙两人在同一条路上前进,甲每小时5km,乙每小时行7km,甲于中午12点时经过A地,乙于下午2点经过A地,
- x:8=0.2::1/2过程啊啊啊啊啊啊啊啊啊啊啊
猜你喜欢