∴BD=8厘米,∠B=∠C,
①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP全等,理由如下:
根据题意得:经过1秒时,BP=CQ=2厘米,
所以CP=10厘米-2厘米=8厘米,
即CP=BD=8厘米,
在△DBP和△PCQ中
|
∴△DBP≌△PCQ(SAS),
即若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP全等;
②设当点Q的运动速度为a厘米/秒时,时间是t秒,能够使△BPD与△CQP全等,
∵点Q的运动速度与点P的运动速度不相等,
∴BP和CQ不是对应边,
即BD=CQ,BP=CP,
即2t=10-2t,
解得:t=2,
∵BD=CQ,
∴8=2a,
解得:a=4,
即当点Q的运动速度为4厘米/秒时,时间是t秒,能够使△BPD与△CQP全等;
(2)设经过t秒时,P、Q第一次相遇,
∵P的速度是2厘米/秒,Q上午速度是4厘米/秒,
∴16+16+2t=4t,
解得:t=16,
此时Q走了4×16=64(厘米),
∵64-16-16-10-16=12,
即经过16秒后点P与点Q第一次在△ABC的边AB上相遇.