若关于x的方程x2-(a2+b2-6b)x+a2+b2+2a-4b+1=0的两实数根为x1,x2且满足x1≤0≤x2≤1,则a2+b2+4a的最小值和
答案是最小值-3.5最大值5+4sqrt(5)
人气:495 ℃ 时间:2019-08-21 16:57:42
解答
设f(x)=x^2-(a^2+b^2-6b)x+a^2+b^2+2a-4b+1
函数开口向上
x=0,a^2+b^2+2a-4b+1
推荐
- 关于的方程x^2-(a^2+b^2-6b)x+a^2+b^2+2a-4b+1=0的两个实数根x1x2满足x1≤ 0≤x2≤1,则a^2+b^2+4a的最小值
- 设X1,X2是关于一元二次方程x^2+2ax+a^2+4a-2=0的两个实数根,当a为何值时,x^21+x^22有最小值,为多少
- 设X1,X2是关于一元二次方程X的平方+2aX+a平方+4a-2=0的两个实数根,问a为和值时,X1+X2有最小值,最小值
- 如果关于x的三个方程x2+4ax-4a+3=0,x2+(a-1)x+a2=0,x2+2ax-2a=0中,有且只有一个方程有实数解,则实数a的取值范围--------
- 若三个方程x2+4ax+3-4a=0,x2+(a-1)x+a2=0,x2+2ax-2a=0中至少有一个方程有实数根,试求a的范围?
- '离.很近'用英语怎么说?
- 阿伏伽德罗公式pV=nRT的意义?
- 摩尔质量就是1摩尔物质的质量对么
猜你喜欢