(1)△CDA≌△DCE,△BAD≌△DCE;(2分)
①△CDA≌△DCE的理由是:
∵AD∥BC,
∴∠CDA=∠DCE.(3分)
又∵DA=CE,CD=DC,(4分)
∴△CDA≌△DCE.(5分)
②△BAD≌△DCE的理由是:
∵AD∥BC,
∴∠CDA=∠DCE.(3分)
又∵四边形ABCD是等腰梯形,
∴∠BAD=∠CDA,
∴∠BAD=∠DCE.(4分)
又∵AB=CD,AD=CE,
∴△BAD≌△DCE.(5分)
(2)当等腰梯形ABCD的高DF=3时,对角线AC与BD互相垂直.(6分)
理由是:设AC与BD的交点为点G,∵四边形ABCD是等腰梯形,
∴AC=DB.
又∵AD=CE,AD∥BC,
∴四边形ACED是平行四边形,(7分)
∴AC=DE,AC∥DE.
∴DB=DE.(8分)
则BF=FE,
又∵BE=BC+CE=BC+AD=4+2=6,
∴BF=FE=3. (9分)
∵DF=3,
∴∠BDF=∠DBF=45°,∠EDF=∠DEF=45°,
∴∠BDE=∠BDF+∠EDF=90°,
又∵AC∥DE
∴∠BGC=∠BDE=90°,即AC⊥BD.(10分)
(说明:由DF=BF=FE得∠BDE=90°,同样给满分.)