
∴AB=CD=2,BC=AD=3,∠A=∠B=∠C=∠D=90°.
∵四边形ABEF与四边形A′B′EF关于EF对称,
∴BE=B′E.
∵点B′为CD的中点,
∴B′C=DB′=
| 1 |
| 2 |
设BE=x,则CE=3-x,B′E=x,
在Rt△B′CE中,BE′2=B′C2+CE2,
x2=1+(3-x)2,
解得:x=
| 5 |
| 3 |
∴CE=3-
| 5 |
| 3 |
| 4 |
| 3 |
∵∠DB′G+∠DGB′=90°,∠DB′G+∠CB′E=90°,
∴∠DGB′=∠CB′E,
∴△DB′G∽△CEB′,
∴
| DB′ |
| EC |
| 1 | ||
|
∴
| DB′ |
| EC |
| 3 |
| 4 |
∴
| S △ECB′ |
| S △B′DG |
| 4 |
| 3 |
| 16 |
| 9 |
故选D.

A. 9:4