已知BD、CE是△ABC的高,点P在BD的延长线上,BP=AC,点Q在CE上,CQ=AB,AP=5,则AQ=______ ∠PAQ=______
人气:277 ℃ 时间:2019-10-17 02:13:21
解答
1、AP=AQ部分
从题目条件看,已经有BP=AC,CQ=AB,另外要求证的是AP=AQ,可见,如果题目正确的话,△APB就全等于△QAC,因此解题的思路之一,就是如何来证明这两个三角形全等.
对△APB和△QAC,现在我们已经有两边相等了,那么一个自然的想法就是看两边夹的角是不是相等.
由于BP垂直AC,CQ垂直AB,那么∠PBA+∠BAC=90度=∠QCA+∠CAB;
所以∠PBA=∠QCA
这样AP=AQ得证.
2、AP垂直AQ部分
从△APB和△QAC全等,可知∠PAB=∠AQC,所以,
∠PAQ=∠PAE+∠EAQ=∠AQE+∠EAQ=∠AEC
又因为CE垂直AB,所以∠PAQ=90度,题目得证
推荐
- 已知,在△ABC中,AB>AC,M为BC边上的中点,过M点的直线垂直于∠A的平分线于点N,分别交AB及AC的延长线于点D、E.
- 数学八年级下册几何证明题.
- 如图,在▱ABCD中,BD是对角线,AE⊥BD于点E,CF⊥BD于点F,试判断四边形AECF是不是平行四边形,并说明理由.
- 把这句话翻译成英文( 对于整个世界来说,你只是一个人,但是对于我来说,你就是整个世界.)
- Yes,I___.___(eat)this kind of fruit when I____(visit)a small island in Thailand.
- matlab中语句f=@(x,y)exp(-x.^2/3).*sin(x.^2+2*y)中@(x,
- 童童问爸爸:“爸爸,你一个月发多少工资呀?”爸爸说:“告诉你吧,我每月把工资的60%留作日常开支,把剩下的工资和妈妈节余的360元一起存入银行.这样每月存人银行的钱恰好是我工
- 关与世界人口的英文作文
猜你喜欢