求解高中数学数列
在无穷等比数列中,当|q|<1,且每一项与它以后所有项的和之比为7:2时,求此数列的公比?
人气:378 ℃ 时间:2020-04-24 11:48:31
解答
根据题意,
S=a1/(1-q)
S-a1=a2/(1-q)
每一项与它以后所有项的和之比为7:2
所以a1:a2/(1-q)=7:2
a2=a1q
因此1:q/(1-q)=7:2
q=2/9
推荐
- 我特讨厌数列
- 高中数学数列 求解 急啊!
- 数列{a(n)}中.a(1)=1,当n>=2时,其前n项和S(n)满足:[S(n)]^2=a(n)·[S(n)-0.5].
- 已知{an}的前n项和为Sn,且an+Sn=4
- 1.三个不同的实数a,b,c成等差数列,a,b,c成等比数列,则a/b等于( )..
- 一道关于测滑轮组机械效率的实验探究题
- 有关地震的调查问卷题目(选择题的)
- 由于温度变化,水,空气,生物等外力的作用和影响,地表或近地造成的破坏,称为(
猜你喜欢