如图,在△ABC中,角C=90度,AC=BC,过点C在△ABC外作直线MN,AM⊥MN于M,BN⊥MN于N.①求证MN=AM+BN.
②如图,若过点C作直线MN与线段AB相交,AM⊥MN于M,BN⊥MN于N,①中的结论是否仍然成立?说明理由.
人气:434 ℃ 时间:2019-08-19 00:21:33
解答
证明:(1)∵∠ACB=90°,∴∠ACM+∠BCN=90°
而∠AMC=90°,∴∠MAC=∠BCN,又AC=CB
∴直角△AMC≌直角△CNB =>CM=BN,CN=AM
即MN=MC+CN=BN+AM
(2)此时同样有∠ACM=90°-∠BCN=∠CBN
同样AC=BC,∴直角△ACM≌直角△CBN
=>AM=CN,BN=CM,∴此时有
MN=|CM-CN|=|BN-AM|,不再有(1)的结论
推荐
- 如图,已知在△ABC中,∠C=90°,AC=BC,过点C在△ABC外作直线MN,AM⊥MN于M,BN⊥MN于N.求证:MN=AM+BN.
- 如图,已知在△ABC中,∠C=90°,AC=BC,过点C在△ABC外作直线MN,AM⊥MN于M,BN⊥MN于N.求证:MN=AM+BN.
- 如图,已知在△ABC中,∠C=90°,AC=BC,过点C在△ABC外作直线MN,AM⊥MN于M,BN⊥MN于N.求证:MN=AM+BN.
- 如图:在△ABC中,角C=90°,AC=BC,过点C在△ABC外作直线MN,AM⊥MN于M,BN⊥MN于N.求证:BN-AM=MN
- 如图在三角形ABC中,角C=90度,AC=BC过点C在三角形ABC外作直线MN,AM垂直MN于M,BN垂直MN于N.
- 如图,在正方形ABCD中,F为CD的中点,E是BC上的一点,且CE:BE=1:3,试猜想AF与EF的位置关系 并说明理由
- 1、若m,n属于R,比较m4-m3n与n3m-n4的大小.
- 把一个棱长为4分米的正方体木块削成一个最大的圆锥体,这个圆锥体的体积是( )立方分米. A.50.24 B.100.48 C.64 D.16
猜你喜欢