如图,在△ABC中,角C=90度,AC=BC,过点C在△ABC外作直线MN,AM⊥MN于M,BN⊥MN于N.①求证MN=AM+BN.
②如图,若过点C作直线MN与线段AB相交,AM⊥MN于M,BN⊥MN于N,①中的结论是否仍然成立?说明理由.
人气:413 ℃ 时间:2019-08-19 00:21:33
解答
证明:(1)∵∠ACB=90°,∴∠ACM+∠BCN=90°
而∠AMC=90°,∴∠MAC=∠BCN,又AC=CB
∴直角△AMC≌直角△CNB =>CM=BN,CN=AM
即MN=MC+CN=BN+AM
(2)此时同样有∠ACM=90°-∠BCN=∠CBN
同样AC=BC,∴直角△ACM≌直角△CBN
=>AM=CN,BN=CM,∴此时有
MN=|CM-CN|=|BN-AM|,不再有(1)的结论
推荐
- 如图,已知在△ABC中,∠C=90°,AC=BC,过点C在△ABC外作直线MN,AM⊥MN于M,BN⊥MN于N.求证:MN=AM+BN.
- 如图,已知在△ABC中,∠C=90°,AC=BC,过点C在△ABC外作直线MN,AM⊥MN于M,BN⊥MN于N.求证:MN=AM+BN.
- 如图,已知在△ABC中,∠C=90°,AC=BC,过点C在△ABC外作直线MN,AM⊥MN于M,BN⊥MN于N.求证:MN=AM+BN.
- 如图:在△ABC中,角C=90°,AC=BC,过点C在△ABC外作直线MN,AM⊥MN于M,BN⊥MN于N.求证:BN-AM=MN
- 如图在三角形ABC中,角C=90度,AC=BC过点C在三角形ABC外作直线MN,AM垂直MN于M,BN垂直MN于N.
- 青草晒干后,要失去原重量的80%.现在有青草4800千克,晒干后是多少千克
- 英语翻译
- 一篇500字的文章 成长的喜悦
猜你喜欢