如图,在△ABC中,角C=90度,AC=BC,过点C在△ABC外作直线MN,AM⊥MN于M,BN⊥MN于N.①求证MN=AM+BN.
②如图,若过点C作直线MN与线段AB相交,AM⊥MN于M,BN⊥MN于N,①中的结论是否仍然成立?说明理由.
人气:143 ℃ 时间:2019-08-19 00:21:33
解答
证明:(1)∵∠ACB=90°,∴∠ACM+∠BCN=90°
而∠AMC=90°,∴∠MAC=∠BCN,又AC=CB
∴直角△AMC≌直角△CNB =>CM=BN,CN=AM
即MN=MC+CN=BN+AM
(2)此时同样有∠ACM=90°-∠BCN=∠CBN
同样AC=BC,∴直角△ACM≌直角△CBN
=>AM=CN,BN=CM,∴此时有
MN=|CM-CN|=|BN-AM|,不再有(1)的结论
推荐
猜你喜欢
- 已知X的平方-3X+2=0,求x2+X2分之1的值
- 某人骑自行车上学,若速度为15km/h,则早到15min,若速度为9km/h,则迟到15min,先打算提前10min到达,自行车的速度应为多少?
- 读书不觉已春深 下一句 求
- 在10%的利率下,一元三期的复利现值系数分别是0.9091,0.8264,0.7513,则三年期的年金现值系数是?
- There is a library in our school对a提问
- mghco3和mgco3的溶解度大小比较?
- 筷子是一个杠杆,那么它的支点在哪里?说理由
- 三角形三边之和为10,其夹角的余弦是方程2X^2-3X-2=0的根······