=xy(a2+b2)+ab(x2+y2-1)
=xy(a2+b2)+ab[(x+y)2-2xy-1].
∵a、b、x、y均为正实数,x+y=1,
∴(ax+by)(ay+bx)-ab
=xy(a2+b2)-2abxy
=xy(a-b)2≥0,
∴ab≤(ax+by)(ay+bx).
又(ax+by)(ay+bx)≤[
| (ax+by)+(ay+bx) |
| 2 |
| a(x+y)+b(x+y) |
| 2 |
| a+b |
| 2 |
| (a+b)2 |
| 4 |
∴ab≤(ax+by)(ay+bx)≤
| (a+b)2 |
| 4 |
| (a+b)2 |
| 4 |
| (ax+by)+(ay+bx) |
| 2 |
| a(x+y)+b(x+y) |
| 2 |
| a+b |
| 2 |
| (a+b)2 |
| 4 |
| (a+b)2 |
| 4 |