> 数学 >
已知x、y、z是实数,a、b、c是正实数,求证:
[(b+c)/a]x² + [(a+c)/b]y² + [(a+b)/c]z² ≥ 2(xy+yz+xz)
人气:313 ℃ 时间:2020-04-08 18:43:56
解答
[(b+c)/a]x² + [(a+c)/b]y² + [(a+b)/c]z²
=b/a*x^2+a/b*y^2+c/a*x^2+a/c*z^2+c/b*y^2+b/c*z^2
≥2xy+2xz+2yz
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版