在三角形ABC中,AB=5,BC=3,AC=4,线段AC上一动点P(P与A、C不重合),过点P作PQ//AB交BC于点Q.在AB上是
在AB上是否存在点M,使得三角形PQM为等腰直角三角形?若不存在,请说明理由;若存在,请求PQ的长.
人气:273 ℃ 时间:2020-05-17 21:56:14
解答
1角PMQ为直角
设PQ=2X
(8X/5*6X/5)/2+(2X+5)X/2=6
解得X=60/49
PQ120/49
2角MQQ或MQP为直角
设PQ=X
(4X/5*3X/5)/2+(X+5)X/2=6
解得X=60/37角PMQ为直角,AOMQ不是正方形吗?,这是不是增解。
推荐
- 如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA、CB分别相交于点P、Q,则线段PQ长度的最小值是( ) A.4.75 B.4.8 C.5 D.42
- 在三角形ABC中,线段AB、AC的垂直平分线分别交BC于P、Q两点,且BP=PQ=QC,求证:三角形APQ为等边三角形
- 如图,在△ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA、CB分别相交于点P、Q,则线段PQ长度的最小值是( ) A.4.75 B.4.8 C.5 D.42
- 在三角形ABC中,AB=10,AC=8,BC=6,经过点C且与边AB相切的动圆与CA,CB分别相交于点P,Q,则线段PQ的最小值
- 正三角形ABC的边长是2,P、Q分别在AB,AC上运动,且线段PQ将三角形ABC的面积二等分,求线段PQ长的取值范围.
- 用简便方法计算:56×74+85×44+11×56.
- 分解因时:(a+2)平方-2a(a+2) 计算:(a的三次方+4a的平方+4a)÷(a的平方+2a) 快啊
- 六年级下册语文每课一练第17课《汤姆.索亚历险记》第五题
猜你喜欢