∵∠ABE=∠BAC+∠ACB,
∠D=180°-∠DAC-∠DCA,
∵∠BAD=90°,∠BCD=90°,
∴∠BAC+∠ACB=90°+90°-∠DAC-∠DCA=180°-∠DAC-∠DCA,
∴∠ABE=∠D,
又∵BE=DC,AB=AD,
∴△ABE≌△ADC,
∴AE=AC,∠EAB=∠DAC,
∴∠EAC=90°,
∴S△AEC=
1 |
2 |
1 |
4 |
∵S△AEC=S四边形ABCD=12,
∴
1 |
4 |
∴EC=4
3 |
∴BC+CD=BC+BE=EC=4
3 |
故答案为:4
3 |
1 |
2 |
1 |
4 |
1 |
4 |
3 |
3 |
3 |