延长CB到E,使BE=DC,连接AE,AC,∵∠ABE=∠BAC+∠ACB,
∠D=180°-∠DAC-∠DCA,
∵∠BAD=90°,∠BCD=90°,
∴∠BAC+∠ACB=90°+90°-∠DAC-∠DCA=180°-∠DAC-∠DCA,
∴∠ABE=∠D,
又∵BE=DC,AB=AD,
∴△ABE≌△ADC,
∴AE=AC,∠EAB=∠DAC,
∴∠EAC=90°,
∴S△AEC=
| 1 |
| 2 |
| 1 |
| 4 |
∵S△AEC=S四边形ABCD=12,
∴
| 1 |
| 4 |
∴EC=4
| 3 |
∴BC+CD=BC+BE=EC=4
| 3 |
故答案为:4
| 3 |

