在等腰RT△ABC中,∠BAC=90度,AD=AE,AF⊥BE,FG⊥CD,求证:BG=AF+FG
人气:428 ℃ 时间:2019-10-09 14:05:32
解答
∵AD=AE,AB=AC,∠BAC为公共角
∴△BAE≌△CAD
∴∠ABE=∠ACD,
∴∠DCB=∠EBC
延长GF到H,使FH=AF,连接BH.
在△BAF,△BHF中,
AF=FH,BF为公共边,∠BFA=∠BFH(易证)
∴△BAF≌△BHF
∴∠BAF=∠BHF,∠ABF=∠HBF=45°
∵∠BAF=∠AEB=∠EBF+45°,∠HBG=∠EBF+45°
∴∠GBH=∠BHF
∴GB=GH
∴BG=AF+FG
推荐
- 如图,在等腰直角△ABC中,AD=AE,AF⊥BE交BC于点F,过F作FG⊥CD交BE延长线于G,求证:BG=AF+FG.
- 如图,在等腰直角△ABC中,AD=AE,AF⊥BE交BC于点F,过F作FG⊥CD交BE延长线于G,求证:BG=AF+FG.
- 如图,在等腰直角△ABC中,AD=AE,AF⊥BE交BC于点F,过F作FG⊥CD交BE延长线于G,求证:BG=AF+FG.
- 在Rt△ABC中,∠A=90°,CE是角平分线,和高AD相交于F,作FG∥BC交AB于G, 求证:AE=BG.
- 在直角三角形ABC中,角BAC=90度,AD=AE,AF垂直BE交BC为F,过F作FG垂直于CD交BE延长线于G,求证BG=AF+FG
- 将自然数,1,2,3,4,5按三角形击剑律排列,则第15行的各数之和是多少?
- 英语翻译
- 英语翻译
猜你喜欢