苍蝇与宇宙飞船
令人讨厌的苍蝇,与宏伟的航天事业似乎风马牛不相及,但仿生学却把它们紧密地联系起来了.
苍蝇是声名狼藉的“逐臭之夫”,凡是腥臭污秽的地方,都有它们的踪迹.苍蝇的嗅觉特别灵敏,远在几千米外的气味也能嗅到.但是苍蝇并没有“鼻子”,它靠什么来充当嗅觉的呢? 原来,苍蝇的“鼻子”——嗅觉感受器分布在头部的一对触角上.
每个“鼻子”只有一个“鼻孔”与外界相通,内含上百个嗅觉神经细胞.若有气味进入“鼻孔”,这些神经立即把气味刺激转变成神经电脉冲,送往大脑.大脑根据不同气味物质所产生的神经电脉冲的不同,就可区别出不同气味的物质.因此,苍蝇的触角像是一台灵敏的气体分析仪.
仿生学家由此得到启发,根据苍蝇嗅觉器的结构和功能,仿制成功一种十分奇特的小型气体分析仪.这种仪器的“探头”不是金属,而是活的苍蝇.就是把非常纤细的微电极插到苍蝇的嗅觉神经上,将引导出来的神经电信号经电子线路放大后,送给分析器;分析器一经发现气味物质的信号,便能发出警报.这种仪器已经被安装在宇宙飞船的座舱里,用来检测舱内气体的成分.
这种小型气体分析仪,也可测量潜水艇和矿井里的有害气体.利用这种原理,还可用来改进计算机的输入装置和有关气体色层分析仪的结构原理中.
从萤火虫到人工冷光
自从人类发明了电灯,生活变得方便、丰富多了.但电灯只能将电能的很少一部分转变成可见光,其余大部分都以热能的形式浪费掉了,而且电灯的热射线有害于人眼.那么,有没有只发光不发热的光源呢? 人类又把目光投向了大自然.
在自然界中,有许多生物都能发光,如细菌、真菌、蠕虫、软体动物、甲壳动物、昆虫和鱼类等,而且这些动物发出的光都不产生热,所以又被称为“冷光”.
在众多的发光动物中,萤火虫是其中的一类.萤火虫约有1 500种,它们发出的冷光的颜色有黄绿色、橙色,光的亮度也各不相同.萤火虫发出冷光不仅具有很高的发光效率,而且发出的冷光一般都很柔和,很适合人类的眼睛,光的强度也比较高.因此,生物光是一种人类理想的光.
科学家研究发现,萤火虫的发光器位于腹部.这个发光器由发光层、透明层和反射层三部分组成.发光层拥有几千个发光细胞,它们都含有荧光素和荧光酶两种物质.在荧光酶的作用下,荧光素在细胞内水分的参与下,与氧化合便发出荧光.萤火虫的发光,实质上是把化学能转变成光能的过程.
早在40年代,人们根据对萤火虫的研究,创造了日光灯,使人类的照明光源发生了很大变化.近年来,科学家先是从萤火虫的发光器中分离出了纯荧光素,后来又分离出了荧光酶,接着,又用化学方法人工合成了荧光素.由荧光素、荧光酶、ATP(三磷酸腺苷)和水混合而成的生物光源,可在充满爆炸性瓦斯的矿井中当闪光灯.由于这种光没有电源,不会产生磁场,因而可以在生物光源的照明下,做清除磁性水雷等工作.
现在,人们已能用掺和某些化学物质的方法得到类似生物光的冷光,作为安全照明用.
电鱼与伏特电池
自然界中有许多生物都能产生电,仅仅是鱼类就有500余种 .人们将这些能放电的鱼,统称为“电鱼”.
各种电鱼放电的本领各不相同.放电能力最强的是电鳐、电鲶和电鳗.中等大小的电鳐能产生70伏左右的电压,而非洲电鳐能产生的电压高达220伏;非洲电鲶能产生350伏的电压;电鳗能产生500伏的电压,有一种南美洲电鳗竟能产生高达880伏的电压,称得上电击冠军,据说它能击毙像马那样的大动物.
电鱼放电的奥秘究竟在哪里?经过对电鱼的解剖研究, 终于发现在电鱼体内有一种奇特的发电器官.这些发电器是由许多叫电板或电盘的半透明的盘形细胞构成的.由于电鱼的种类不同,所以发电器的形状、位置、电板数都不一样.电鳗的发电器呈棱形,位于尾部脊椎两侧的肌肉中;电鳐的发电器形似扁平的肾脏,排列在身体中线两侧,共有200万块电板;电鲶的发电器起源于某种腺体,位于皮肤与肌肉之间,约有500万块电板.单个电板产生的电压很微弱,但由于电板很多,产生的电压就很大了.
电鱼这种非凡的本领,引起了人们极大的兴趣.19世纪初,意大利物理学家伏特,以电鱼发电器官为模型,设计出世界上最早的伏打电池.因为这种电池是根据电鱼的天然发电器设计的,所以把它叫做“人造电器官”.对电鱼的研究,还给人们这样的启示:如果能成功地模仿电鱼的发电器官,那么,船舶和潜水艇等的动力问题便能得到很好的解决.
水母的顺风耳
“燕子低飞行将雨,蝉鸣雨中天放晴.”生物的行为与天气的变化有一定关系.沿海渔民都知道,生活在沿岸的鱼和水母成批地游向大海,就预示着风暴即将来临.
水母,又叫海蜇,是一种古老的腔肠动物,早在5亿年前,它就漂浮在海洋里了.这种低等动物有预测风暴的本能,每当风暴来临前,它就游向大海避难去了.
原来,在蓝色的海洋上,由空气和波浪摩擦而产生的次声波 (频率为每秒8—13次),总是风暴来临的前奏曲.这种次声波人耳无法听到,小小的水母却很敏感.仿生学家发现,水母的耳朵的共振腔里长着一个细柄,柄上有个小球,球内有块小小的听石,当风暴前的次声波冲击水母耳中的听石时,听石就刺激球壁上的神经感受器,于是水母就听到了正在来临的风暴的隆隆声.
仿生学家仿照水母耳朵的结构和功能,设计了水母耳风暴预测仪,相当精确地模拟了水母感受次声波的器官.把这种仪器安装在舰船的前甲板上,当接受到风暴的次声波时,可令旋转360°的喇叭自行停止旋转,它所指的方向,就是风暴前进的方向;指示器上的读数即可告知风暴的强度.这种预测仪能提前15小时对风暴作出预报,对航海和渔业的安全都有重要意义.
-- 结构构件
对于构件,在截面面积相同的情况下,把材料尽可能放到远离中和轴的位置上,是有效的截面形状.有趣的是,在自然界许多动植物的组织中也体现了这个结论.例如:“疾风知劲草”,许多能承受狂风的植物的茎部是维管状结构,其截面是空心的.支持人承重和运动的骨骼,其截面上密实的骨质分布在四周,而柔软的骨髓充满内腔.在建筑结构中常被采用的空心楼板、箱形大梁、工形截面钣梁以及折板结构、空间薄壁结构等都是根据这条结论得来的.
-- 斑马
斑马生活在非洲大陆,外形与一般的马没有什么两样,它们身上的条纹是为适应生存环境而衍化出来的保护色.在所有斑马中,细斑马长得最大最美.它的肩高140-160厘米,耳朵又圆又大,条纹细密且多.斑马常与草原上的牛羚、旋角大羚羊、瞪羚及鸵鸟等共外,以抵御天敌.人类将斑马条纹应用到到军事上是一个是很成功仿生学例子.
补充-- 最新发展:
仿生学与遗传学的整合是系统生物工程(systems bio-engineering)的理念,也就是发展遗传工程的仿生学.人工基因重组、转基因技术是自然重组、基因转移的模仿,还天然药物分子、生物高分子的人工合成是分子水平的仿生,人工神经元、神经网络、细胞自动机是细胞系统水平的仿生,跟随单基因遗传学、单基因转移发展到多基因系统调控研究的系统遗传学(system genetics)、多基因转基因的合成生物学(synthetic biology),以及纳米生物技术(nano-biotechnology)、生物计算(bio - computation、DNA计算机技术的系统生物工程发展,仿生学已经全面发展到一个从分子、细胞到器官的人工生物系统(artificial biosystem)开发的时代.
参考资料:http://baike.baidu.com/view/803.htm
回答者: zhuxiandeai - 试用期 一级3-13 13:02
多着呢,人类进步就是不断学习的过程
学鸟飞行,学蜜蜂、鸟盖房子,学鱼游泳,学青蛙跳
现代仿生学就专门研究自然界各种生物的特别行为
什么东西都有值得学习地地方,关键在于发现
回答者: 枫林红焰 - 秀才 三级3-13 13:02
看看《仿生学》或许对你帮助更大
根据响尾蛇的颊窝能感觉到0.001℃的温度变化的原理,人类发明了跟踪追击的响尾蛇导弹.
人类还利用蛙跳的原理设计了蛤蟆夯.
人类模仿警犬的高灵敏嗅觉制成了用于侦缉的“电子警犬”.
科学家根据野猪的鼻子测毒的奇特本领制成了世界上第一批防毒面具.
生物学家通过对蛛丝的研究制造出高级丝线,抗撕断裂降落伞与临时吊桥用的高强度缆索.
船和潜艇来自人们对鱼类和海豚的模仿.
响尾蛇导弹等就是科学家模仿蛇的“热眼”功能和其舌上排列着一种似照相机装置的天然红外线感知能力的原理,研制开发出来的现代化武器.
火箭升空利用的是水母、墨鱼反冲原理.
科研人员通过研究变色龙的变色本领,为部队研制出了不少军事伪装装备.
科学家研究青蛙的眼睛,发明了电子蛙眼.
白蚁不仅使用胶粘剂建筑它们的土堆,还可以通过头部的小管向敌人喷射胶粘剂.于是人们按照同样的原理制造了工作的武器—一块干胶炮弹.
美国空军通过毒蛇的“热眼”功能,研究开发出了微型热传感器.
我国纺织科技人员利用仿生学原理,借鉴陆地动物的皮毛结构,设计出一种KEG保温面料,并具有防风和导湿的功能.
回答者: 单链DNA429 - 童生 一级3-13 13:22
几乎所有的都是,要看你从什么角度去看!
因为物竞天择,适者生存,能存活到现在的生物都有其自己独特的一套或多套生存繁殖的手段,都值得人类学习!
回答者: bb881121 - 助理 二级 3-13 14:17
动物仿生学
生物学家通过对蛛丝的研究制造出高级丝线,抗撕断裂降落伞与临时吊桥用的高强度缆索.船和潜艇来自人们对鱼类和海豚的模仿.
响尾蛇导弹等就是科学家模仿蛇的“热眼”功能和其舌上排列着一种似照相机装置的天然红外线感知能力的原理,研制开发出来的现代化武器.
火箭升空利用的是水母、墨鱼反冲原理.
科研人员通过研究变色龙的变色本领,为部队研制出了不少军事伪装装备.
科学家研究青蛙的眼睛,发明了电子蛙眼.
白蚁不仅使用胶粘剂建筑它们的土堆,还可以通过头部的小管向敌人喷射胶粘剂.于是人们按照同样的原理制造了工作的武器—一块干胶炮弹.
美国空军通过毒蛇的“热眼”功能,研究开发出了微型热传感器.
我国纺织科技人员利用仿生学原理,借鉴陆地动物的皮毛结构,设计出一种KEG保温面料,并具有防风和导湿的功能.
根据响尾蛇的颊窝能感觉到0.001℃的温度变化的原理,人类发明了跟踪追击的响尾蛇导弹.人类还利用蛙跳的原理设计了蛤蟆夯.人类模仿警犬的高灵敏嗅觉制成了用于侦缉的“电子警犬”.科学家根据野猪的鼻子测毒的奇特本领制成了世界上第一批防毒面具.
仿生学是人类一直使用的方法,如模仿海豚皮而构造的"海豚皮游泳衣"、科学家研究鲸鱼的皮肤时,发现其上有沟漕的结构,于是有个科学家就依照鲸鱼皮构造,造成一个薄膜蒙在飞机的表面,据实验可节约能源3%,若全国的飞机都蒙上这样的表面,每年可节约几十亿.又如有科学家研究蜘蛛,发现蜘蛛的腿上没有肌肉,有脚的动物会走,主要是靠肌肉的收缩,现在蜘蛛没有肌肉为什么会走路?经研究蜘蛛不是靠肌肉的收缩进行走路的,而是靠其中的"液压"的结构进行走路,据此人们发明了液压步行机……总之,从自然界得到启迪,模仿其结构进行发明创造.这就是仿生学. 这是我们向自然界学习的一个方面.
另一方面,我们还可以从自然的规律中得到启迪,利用其原理进行设计(包括设计算法),这就是智能计算的思想.
智能计算
智能计算,也有人称之为"软计算",就是借用自然界(生物界)规律的启迪,根据其原理,模仿设计求解问题的算法.如:人工神经网络技术、遗传算法、进化规划、模拟煺火技术和群集智能技术等.
群集智能(Swarm Intelligence)
群居昆虫以集体的力量,进行觅食、御敌、筑巢的能力.这种群体所表现出来的"智能",就称之为群体智能.如蜜蜂采蜜、筑巢、蚂蚁觅食、筑巢等.从群居昆虫互相合作进行工作中,得到启迪,研究其中的原理,以此原理来设计新的求解问题的算法.
蚂蚁算法
蚂蚁觅食时,在它走过的路上,留下外激素,这些外激素就象留下路标一样,留给后来"蚁"一个路径的标志.后面的蚂蚁,就会沿着有外激素的路径行走(外激素越多引诱蚂蚁的能力就越强).科学家们对此进行过试验:用人造的外激素在纸上画上一条路径,对蚂蚁进行试验.结果蚂蚁果然都沿画有外激素的路径行走.
B
D
蚁穴 A
C 食物
蚂蚁寻食时,由蚁穴出发,可沿AC,也可沿ABC(见上图),设各蚂蚁寻到食物后沿原路回穴,并在路上留下外激素,那么因AC路径短,故当它们沿AC返回时,就在AC上留下两次外激素.而沿ABC返回者,因其路径长,仅回到D点,于是AD一段只留过一次外激素(即其上的外激素的浓度比AC上的浓度淡),故这时从蚁穴出来寻食者就会沿浓度大的路径AC行走……最后大多数的蚂蚁都会沿较短的路程进行寻食. 利用这个原理科学者们就设计了蚂蚁算法(进行求最短程).
上面是个简单的原理,当然要设计出切实可行的算法,还要将模型进一步精确,如要计及外激素的挥发(即激素的浓度将随时间而逐步降低等等).
用蚂蚁算法求最短程
1.一群蚂蚁随机从出发点出发,遇到食物,衔住食物,沿原路返回
2. 蚂蚁在往返途中,在路上留下外激素标志
3. 外激素将随时间逐渐蒸发(一般可用负指数函数来描述,即乘上因子e-at)
4. 由蚁穴出发的蚂蚁,其选择路径的概率与各路径上的外激素浓度成正比
蚂蚁算法还可以应用于很多实际问题,例如用于重建通讯路由,管理公司的电话网,对用户记帐 收费等工作,任务分配问题等
不要停,继续思索
进一步,将每个蚂蚁看成是一个神经元,它们之间的通讯联络,看成是各神经元之间的连接,只不过这时的连接不是固定的,而是随机的.即用一个随机连接的神经网络来描述一个群体.这种神经网络所具有的性质,就是群体的智能
科学家们从蜻蜓翅膀末端的一块比周围略大一些的厚斑点得到了启示,从而解决了飞机机翼因剧烈抖动而破碎的现象.