已知直线m经过点P(-3,-3/2),被圆O:x*2+y*2=25所截得的弦长为8,(1)求此弦所在的直线方程
你先画出图形 考虑两种情况1.斜率不存在 2.斜率存在
第一种情况:X=-3 根据勾股定理算 可知该直线满足题意
第二种情况:设直线为Y=KX+B将P点代入 得B=3K-3/2
即直线为:2KX-2Y+6K-3=0
因为题目要求弦长为8 所以利用垂径定理 用勾股定理算得圆心即原点到直线的距离为3 再利用点到直线的距离公式可以解出K=-3/4 即直线为3X+4Y+15=0
综上所述:直线方程为X=-3和3X+4Y+15=0
我看不懂无斜率这个情况 怎么构建三角形 思路里构建不出那个图,请帮忙把无斜率的图也画出来.
人气:273 ℃ 时间:2020-04-12 22:43:35
解答
无斜率的情况应该是比后面那种简单的
斜率不存在,那么直线是x=-3
所以圆心(0,0)到直线x=-3的距离是d=3
√(5²-3²)=4
所以圆被直线x=-3截得的弦长的一半是4
那么圆被直线x=-3截得的弦长是2*4=8
推荐
- 已知直线m经过点P(-3,-3/2),被圆O:x*2+y*2=25所截得的弦长为8,(1)求此弦所在的直线方程
- 求经过点P(-3,-3/2),且被圆x^2+y^2=25截得的弦长为8的直线的方程
- 若直线过点M(-3,-3/2),且被圆x^2+y^2=25截得的弦长为8,则这条直线的方程为?
- 过点p(-3,-3/2)的直线被圆x*2+y*2=25截得的弦长为8,求此弦所在直线方程
- 过点P(3,6)且被圆x2+y2=25截得的弦长为8的直线方程为 _.
- 已知向量a,b满足向量a的模=1,向量a*(向量a-向量b)=0,则向量b的模的取值范围是?
- 解释下面加点词的意思
- gee,do i know u,that such emotional young man
猜你喜欢