设f(x)是定义在R上的增函数,且对于任意的x都有f(-x)+f(x)=0恒成立.如果实数m、n满足不等式f(m2-6m+21)+f(n2-8n)<0,那么m2+n2 的取值范围是( )
A. (9,49)
B. (13,49)
C. (9,25)
D. (3,7)
人气:284 ℃ 时间:2019-08-18 09:11:42
解答
∵对于任意的x都有f(-x)+f(x)=0恒成立∴f(-x)=-f(x)∵f(m2-6m+21)+f(n2-8n)<0,∴f(m2-6m+21)<-f(n2-8n)=f(-n2+8n),∵f(x)是定义在R上的增函数,∴m2-6m+21<-n2+8n∴(m-3)2+(n-4)2<4∵...
推荐
- 设函数y=f(x)定义在R上,对与任意实数m;n,恒有f(m+n)=f(m)f(n).当x>0时,0<f(x)<1.
- 设函数y=f(x)定义在R上,对于任意实数吗m,n,恒有f(m+n)=f(m)f(n),且当X>0时,0
- 设函数y=f(x)定义在R上,对于任意实数m.n,恒有f(m+n)=f(m)*f(n),且当x>0时,0
- 设函数f(x)的定义域是R,对于任意实数m,n,恒有恒有f(m+n)=f(m)×f(n),且x>0时
- 设函数y=f(x)定义在R上,对于任意实数m,n,恒有f(m+n)=f(m)×f(n),且当x>0时,0
- 一个正方体的地面积是49平方分米,它的体积是多少立方分米
- I have read up to (where'what) the children discover the secret cave.选what还是where.
- 怎么样用数列极限的定义证明lim0.999…9(n个)=1(n趋近于无穷)
猜你喜欢