>
数学
>
椭圆的参数方程问题
点P是椭圆x^2/a^2+y^2/b^2=1(a>b>0)上的动点,点A,B关于原点对称.求证:kPA·kPB为定值
那如果AB都在椭圆上呢?
人气:370 ℃ 时间:2020-04-04 10:26:20
解答
P(acosm,bsinm)
A(p,q),B(-p,-q)
则kPA=(bsinm-q)/(acosm-p)
kPB=(bsinm+q)/(acosm+p)
相乘=(b²sin²m-q²)/(a²cos²m-p²)
显然这不可能是定值,条件不足
推荐
***椭圆的参数方程***
椭圆参数方程的问题
椭圆的参数方程是什么?
设椭圆的中心在原点,焦点在x轴上,离心率e=32.已知点P(0,3/2)到这个椭圆上的点的最远距离为7,求这个椭圆方程.
椭圆的参数方程
空气污染怎么治理呢
《道德经》读后感 2000字
a b为正实数1/a+1/b 与1/a+b大小关系及解析
猜你喜欢
太空植物 变异
根号相乘怎么算
钝角三角形外心在哪
把一个直角梯形平均分成两份怎么分哦?
按文写体会
抛物线y的平方等于x的图像
They went _____ the forest from west to east.
公差配合中孔用什么表示
© 2024 79432.Com All Rights Reserved.
电脑版
|
手机版