n+2 |
n |
知a2=
2+1 |
1 |
S2 |
2 |
4a1 |
2 |
S1 |
1 |
| ||
|
又an+1=Sn+1-Sn(n=1,2,3,…),则Sn+1-Sn=
n+2 |
n |
∴nSn+1=2(n+1)Sn,
| ||
|
故数列{
Sn |
n |
(II)证明:Sn+1=4an.当n=1时,S2=a1+a2=4a1,等式成立.
由(1)知:
Sn |
n |
当n≥2时,4an=4(Sn-Sn-1)=2n(2n-n+1)=(n+1)2n=Sn+1,等式成立.
因此对于任意正整数n≥1都有Sn+1=4an.
n+2 |
n |
Sn |
n |
n+2 |
n |
2+1 |
1 |
S2 |
2 |
4a1 |
2 |
S1 |
1 |
| ||
|
n+2 |
n |
| ||
|
Sn |
n |
Sn |
n |