> 数学 >
设x,y≥0,2x+6y=6,则u=4x^2+3xy+y^2-6x-3y的最大值=?最小值=?
答案是:18, 27/2
过程?
人气:486 ℃ 时间:2019-08-18 13:18:24
解答
2x+6y=6 x=3-3y
x≥0 3-3y≥0 y≤1
0≤y≤1
将x=3-3y代入u=4x^2+3xy+y^2-6x-3y=28y^2-48y+18=28(y-6/7)^2-18/7
当y=0时,最大值为18
当y=6/7时,最小值为-18/7
答案中最小值是错的,我的答案是对的!
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版