> 数学 >
探究:平面上有n(n大于等于3)个点,任意三个点不在同一直线上,过任意三个点作三角形,一共能做多少不同的三角形?
当仅有3个点时,可做()个三角形;当有4个点时,可做()个三角形;当有5个点时,可做()个三角形;……
问:当有n个点时,可做()个三角形?
请写出详细的过程以及思考思路.
人气:468 ℃ 时间:2020-04-11 04:12:10
解答
这是个组合问题
使用公式 Cn3=n(n-1)(n-2)/3/2
当n=3时 答案是1
当n=4时 答案是4
当n=5时 答案是10
依次类推
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版