已知1/u+1/v=1/f ,证明u+v大于等于4f
人气:104 ℃ 时间:2020-04-03 02:15:04
解答
这是透镜成像规律,默认:u>0、v>0、f>0
由1/u+1/v=1/f,可得到 f=uv/(u+v)
欲证明:u+v≥4f
也就是证明:u+v≥4uv/(u+v)
也就是证明(u+v)²≥4uv
也就是证明u²+v²+2uv≥4uv
也就是证明u²+v²-2uv≥0
而 u²+v²-2uv=(u-v)²是个完全平方数,
所以u²+v²-2uv≥0成立
也就是证明了u+v≥4f
推荐
- 怎么由1/u+1/v=1/f(u表示物距,v表示像距,f表示凸透镜的焦距)推出u+v等于大于4f.
- 已知1/u+1/v=1/f ,证明u+v大于等于4f 步骤详细一些
- 已知1/v+1/u=1/f 证u+v最小值为4f 用微分的方法做
- 已知在计算电阻的公式1/f=1/u+1/v(f不等于u),已知u,f,求 v
- 在公示u分之1+v分之1=f分之1中,已知u,f,且u不等于f,那么v=
- 怕有鲛人在岸的那首诗的下一句
- 这是一支黑色钢笔翻译句子
- 珠穆朗玛峰南坡比北坡雪线相关问题
猜你喜欢