抛物线:y=ax²-5x+4经过△ABC的三个顶点,已知BC//x轴,点A在x轴上,点C在y轴上,且AC=BC
求:1.抛物线的交点
2.写出A.B.C.三点的坐标并求出抛物线的解析式
3.探究:若点P是抛物线对称轴上且在x轴下方的动点,是否存在△pab是等腰三角形,若存在,求出所有符合条件的点P的坐标,不存在,请说明理由.
人气:427 ℃ 时间:2019-10-14 03:10:44
解答
1.2.因为BC//x轴,A点在x轴,
所以AC=AB,
因为AC=BC,所以三角形ABC为等腰三角形,
化成顶点式y=ax^-5x+4=a(x-5/2a)^+16a-25/4a
A的纵坐标为0,所以16a-25/4a=0,
解得a=25/16.
所以表达式为y=25/16(x-8/5)^
B.C点纵坐标为4,解得x1=16/5,x2=0,
所以A(8/5,0),B(16/5,4),C(0,4)
3.存在
AP=AB=BC=16/5,
所以P(8/5,-16/5)
解题过程太麻烦了,只能到这种程度了,
推荐
- 已知:如图,抛物线y=ax2-5ax+4经过△ABC的三个顶点,已知BC∥x轴,点A在x轴上,点C在y轴上,且AC=BC. (1)求抛物线的对称轴; (2)写出A,B,C三点的坐标并求抛物线的解析式; (3)若点P
- 抛物线y=ax^-5ax+4经过三角形ABC的三个顶点,点A.C分别在x.y轴上,且BC//x轴,AC=BC.点P在对称轴上,且PA=PB,求P点的坐标.
- 抛物线y=ax^2-5ax+4经过三角形ABC三个顶点,点A,C分别在X,Y轴上且BC//X轴,AC=BC,求抛物线的解析式,
- 已知抛物线y=(x-2)2的顶点为C,直线y=2x+4与抛物线交于A、B两点,试求S△ABC.
- 已知如图,△ABC中,AC=BC,BC与x轴平行,点A在x轴上,点C在y轴上,抛物线y=ax2-5ax+4经过△ABC的三个顶点, (1)求出该抛物线的解析式; (2)若直线y=kx+7将四边形ACBD面积平分,求此直线的解
- 经纬度是什么
- 年华渐行渐远 是什么意思?
- First you can make the whole class into two big groups andthen let them have a dis cassion的意思是
猜你喜欢