Sn |
两边平方得4Sn=(an+1)2(1),
(1)式中n用n-1代入得4Sn−1=(an−1+1)2
|
(1)-(2),得4an=(an+1)2-(an-1+1)2,0=(an-1)2-(an-1+1)2,(3分)
[(an-1)+(an-1+1)]•[(an-1)-(an-1+1)]=0,
由正数数列{an},得an-an-1=2,
所以数列{an}是以1为首项,2为公差的等差数列,有an=2n-1.(7分)
(Ⅱ)bn=
1 |
an•an+1 |
1 |
(2n−1)(2n+1) |
1 |
2 |
1 |
2n−1 |
1 |
2n+1 |
裂项相消得Bn=
n |
2n+1 |