> 数学 >
抛物线y=-x2+(m-1)x+m与y轴交于(0,3)点.

(1)求出m的值并画出这条抛物线;
(2)求它与x轴的交点和抛物线顶点的坐标;
(3)x取什么值时,抛物线在x轴上方?
(4)x取什么值时,y的值随x值的增大而减小?
人气:209 ℃ 时间:2020-10-01 13:44:40
解答
(1)由抛物线y=-x2+(m-1)x+m与y轴交于(0,3)得:m=3.
∴抛物线为y=-x2+2x+3=-(x-1)2+4.
列表得:
X-10123
y03430
图象如右.
(2)由-x2+2x+3=0,得:x1=-1,x2=3.
∴抛物线与x轴的交点为(-1,0),(3,0).
∵y=-x2+2x+3=-(x-1)2+4
∴抛物线顶点坐标为(1,4).
(3)由图象可知:
当-1<x<3时,抛物线在x轴上方.
(4)由图象可知:
当x>1时,y的值随x值的增大而减小.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版