由题意得,只要PQ=CD,PD≠QC,四边形PQCD为等腰梯形,
过P、D分别作BC的垂线交BC于E、F两点,
则由等腰梯形的性质可知,EF=PD,QE=FC=2,
所以3t-(24-t)=4,
解得t=7秒,
所以当t=7秒时,四边形PQCD为等腰梯形.
(2)设运动t秒时,直线PQ与⊙O相切于点G,如图2,过P作PH⊥BC于点H,
则PH=AB=8,BH=AP,
可得HQ=26-3t-t=26-4t,
由切线长定理得,PQ=AP+BQ=t+26-3t=26-2t
由勾股定理得:PQ2=PH2+HQ2,即 (26-2t)2=82+(26-4t)2
化简整理得 3t2-26t+16=0,
解得t1=
2 |
3 |
所以,当t1=
2 |
3 |