设F1 F2分别是椭圆x^2/9+y^2/4=1的左右焦点.若点p在椭圆上,且|向量PF1+PF2|=2√5
则向量PF1与向量PF2的夹角的大小为?
人气:130 ℃ 时间:2019-10-19 21:50:43
解答
c^2=a^2-b^2=5,c=√5
F1(-√5,0),F2(√5,0)
设P(m,n),则PF1=(-√5-m,-n),PF2=(√5-m,-n).
|PF1+PF2|=|(-2m,-2n)|=2|(m,n)|=2√(m^2+n^2)=2√5
即m^2+n^2=5.
又P在椭圆上,有m^2/9+n^2/4=1
解之:m^2=9/5,n^2=16/5.
m=±3/√5,n=±4/√5.
取P(3/√5,4/√5).
所以PF1·PF2=(-√5-3/√5,-4/√5)(√5-3/√5,-4/√5)=9/5-5+16/5=0
所以PF1⊥PF2.
推荐
- F1、F2分别是椭圆x^2/4+y^2=1的左右焦点.若P是椭圆上的一个动点,求:向量PF1×向量PF2的最值
- 设F1,F2分别是椭圆x平方/9+y平方/4=1的左右焦点,若P在椭圆上,且|PF1+PF2|=2根号5,求向量PF1与向量PF2的角
- 设F1,F2分别是椭圆x^2/4+y^2=1的左右焦点.若点p是该椭圆上的一个懂点,求向量PF1*向量PF2的最大和最小值
- 已知F1,F2是椭圆C x^2/a^2+y^2/b^2=1(a>b)的两个焦点,P是C上一点,PF1、PF2为向量,且互相垂直
- 已知F1、F2是椭圆C:x^2/a^2+y^2/b^2=1的两个焦点,P为C上一点,且向量PF1与向量PF2的积为0.
- 甲、乙、丙、丁四人今年分别是16、12、11、9岁.问多少年前,甲、乙的年龄是丙、丁年龄和的2倍?
- 电桥法测定中低值电阻误差分析
- 关于读书的座右铭
猜你喜欢