若a^2+a+1=0,求a^2001+a^2002+a^2003+……+a^2009
注:a^2001=a的2001次方
这是因式分解的题目
人气:454 ℃ 时间:2020-03-12 20:57:10
解答
a^2001+a^2002+a^2003+.+a^2009
=a^2001(1+a+a^2+a^3+.+a^8)
=a^2001[1+a+a^2+a^3(1+a+a^2)+a^6(1+a+a^2)]
又:1+a+a^2=0
所以:a^2001+a^2002+a^2003+.+a^2009=0
推荐
猜你喜欢