设数列{An}的前n项和为Sn,已知A1=1,Sn+1=4An+2 求:(1)设bn=An+1-2An,证明数列{bn}是等比数列
2)求an通项
第二问解由(1)可得:
bn=a(n+1)-2an=3•2^(n-1)
∴[a(n+1)]/[2^(n+1)]-(an)/(2^n)=3/4
∴数列{(an)/(2^n)}是首项为1/2,公差为3/4的等差数列
∴(an)/(2^n)=1/2+(n-1)3/4=3/4n-1/4
即an=(3n-1)•2^(n-2) (n∈N*)
问:∴[a(n+1)]/[2^(n+1)]-(an)/(2^n)=3/4 是怎么得到的,为什么
人气:492 ℃ 时间:2020-01-26 06:49:19
解答
a(n+1)-2an=3•2^(n-1)
两边同时除以2^(n+1)
∴[a(n+1)]/[2^(n+1)]-(an)/(2^n)=3/4
推荐
- 设数列{An}的前n项和为Sn,已知A1=1,Sn+1=4An+2 求:(1)设bn=An+1-2An,证明数列{bn}是等比数列(2)求数
- 设数列an的前n项和为Sn,已知a1=1,Sn+1=4an+2 (1)设bn=an+1-2an,证明数列{bn}是等比数列 (2)求数列{an}的通
- 数列{an}中,a1=1,Sn+1=4an+2设bn=an+1-2an,求证{bn}是等比数列,并求其通项.设cn=an/2^n,求证cn是等差数列;求数列的通项公式和前N项和公式
- 数列{an}中,a1=1,Sn+1=4an+2设bn=an+1-2an,求证{bn}是等比数列,并求{an}通项.
- 设数列an中的前n项的和为Sn,并且a1=1,Sn+1=4an+2.设bn=A(n+1)-2an,求证bn是等比数列
- 励志名言英语版
- I have no idea when we will have a discussion about our class rules.(改为简单句)
- 河流径流量主要随气温的变化而变化
猜你喜欢