> 数学 >
已知△ABC的三边为a,b,c,关于x的方程x²-2(a+b)x+c²+2ab=0有两个相等的实数根,又SinA、SinB是关于x的方程(m+5)x²-(2m-5)x+m-8=0的两个实数根,求M的值.
人气:231 ℃ 时间:2019-10-17 06:31:40
解答
∵x²-2(a+b)x+c²+2ab=0有两个相等的实数根,
∴△=0,即[-2(a+b)]²-4(c²+2ab)=0
化简得a²+b²=c²,
∴△ABC是直角三角形,且∠C=90°,
∴Sin²A+Sin²B=(SinA+SinB)²-2SinA*SinB=1
由另一方程的SinA+SinB=(2m-5)/(m+5),SinA*SinB=(m-8)/(m+5)
∴[(2m-5)/(m+5)]²-2*(m-8)/(m+5)=1
去分母化简得m²-24m+80=0,
解得m1=4 ,m2=20
经检验,m=4时m-8
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版