(I)由正弦定理,设
a |
sinA |
b |
sinB |
c |
sinC |
则
3c−a |
b |
3ksinC−ksinA |
ksinB |
3sinC−sinA |
sinB |
所以
cosA−3cosC |
cosB |
3sinC−sinA |
sinB |
即(cosA-3cosC)sinB=(3sinC-sinA)cosB,
化简可得sin(A+B)=3sin(B+C).…(6分)
又A+B+C=π,
所以sinC=3sinA
因此
sinC |
sinA |
(II)由
sinC |
sinA |
由题意
|
∴
5 |
2 |
10 |
cosA−3cosC |
cosB |
3c−a |
b |
sinC |
sinA |
a |
sinA |
b |
sinB |
c |
sinC |
3c−a |
b |
3ksinC−ksinA |
ksinB |
3sinC−sinA |
sinB |
cosA−3cosC |
cosB |
3sinC−sinA |
sinB |
sinC |
sinA |
sinC |
sinA |
|
5 |
2 |
10 |